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Tech Memo Series

The FSU-CAI Center Tech Memo Series is intended
to provide communication to other colleagues and interested
professionals who are actively utilizing compute-is." in their
research. The rationale for the Tech Memo Series is three-
fold. First, pilot studies that show great promise and will
eventuate in research reports can be given a quick distribu-
tion. Secondly, speeches given at professional meetings can
be distributed for broad review and reaction. Third, the
Tech Memo Series provides for distribution of pre-publication
copies of research and implementation studies that after
proper technical review will ultimately be found in profes-
sional journals.

In terms of substance, these reports will be concise,
descriptive, and exploratory in nature. While cast within a
CAI research model, a number of the reports will deal with
technical implementation topics related to computers and
their language or operating systems. Thus, we here at FSIT
trust this Tech Memo Series will serve a useful service and
communication for other workers in the area of computers
and education. Any comments to the authors can be forwarded
via the Florida State University CAI Center.

Duncan N. Hansen
Director
CAI Center
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ABSTRACT

Individualized instruction presents problems in measurement

which challenge the conventional measurement paradigms. Taking into

consideration the problems of item variance characteristics of CAI,

idiosyncratic learning sequences, and lack of a model for effective-

ness assessment, this paper reviews various measurement techniques

used at the Florida State University CAI Center. The R and D strate-

gies focus on two major goals: measurement providing information on

pridrities for revision within the CAI course materials, and measure-

ment speaking directly to the effectiveness of the instructional pro-

cess. Measurement techniques are related to three levels of course

characteristics, (a) microframe, (b) concept segments within a CAI

course, and (c) course effectiveness models. Foreseeable future trends

are briefly discussed.
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MEASUREMENT TECHNIQUES FOR INDIVIDUALIZED INSTRUCTION IN CAI

Duncan N. Hansen and Barbara F. Johnson

I. Introduction

Of the many challenges that individualized instruction poses to

conventional measurement paradigms, the most demanding is the per-

formance criterion orientation of computer-assisted instruction. That

is, the goal of the CAI program is for all students to reach a speci-

fied level of performance through a sequence of objectives or mile-

stones embedded within a training course. This CAI goal plays havoc

with the variance characteristics of both the instructional and test

response items found within the data records of the individualized

course (Hansen, Dick, & Lippert, 1968). A second challenge to conven-

tional measurement is the differential and incomplete learning

sequences. These idiosyncratic sequences limit the application of many

classical psychometric models and techniques. Still a third CAI chall-

enge is posed by the attempts to assess the total effectiveness of the

CAI course; a serious cost-effectiveness assessment would require a

utility model which presently does not exist. Even with these many

challenges, progress is being made in the creation of new measurement

techniques appropriate for the CAI domain.

This paper reviews various measurement techniques used by

educational researchers at the CAI Center at Florida State University.

The strategy of their approaches to the problems has focused on two
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major goals: (a) measurement procedures that yeld outcomes that provide

insightful information regarding the priorities for revision within the

CAI course materials; and (b) measurement outcomes that speak directly

to the effectiveness of the instructional process. In order to gain

some insight into the pursuit .of these two major goals, the measurement

techniques can be related to three levels of course characteristics,

namely: (a) procedures typically utilized at the CAI microframe level;

(b) procedures used for CAI concept segments found within a course; and

(c) course effectiveness models which focus on the appropriateness and

benefits of CAI course outcomes.

II. Microframe Measurement Techniques

Microframe indices are the dependent measures collected during

field tryouts of individualized learning materials, such as mean propor-

tion of correct responses, latency, and subjective confidence. Without

a doubt, probability of correct response, or error rate, has been the

major item statistic looked at within CAI microframe outcomes. These

item statistics present problems for the instructional psychologist in

that criterion levels are difficult to defend on either an emnirical or

theoretical basis. For example, there is little evidence that responding

with a 10% or less error rate leads to either superior terminal perform-

ance or improved retention. Obviously, wide discrepancies in error rate

can result in wide fluctuations in terminal performance; but then,

exceedingly high error rates are interpreted as being indicative of

inappropriate selection of subjects, or of poorly prepared CAI materials.
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Even so, considering incorrect responses, especially in terms of identi-

fying the type and kind of error, provides useful information for the

CAI course revision process.

CAI investigations have shown that a baseline plus iterative

approach provides meaningful guidelines upon which to base CAI course

revision. The primary measurement technique consists of establishing

baseline performance via a series of daily or weekly tests administered

in a conventional course setting. During the development of an under-

graduate physics course (Hansen, Dick, & Lippert, 1968), these investi-

gators administered physics tests according to concept sections to a

substantial number of students enrolled in the traditional lecture-

demonstration course. This provided a statistical data base for deciding

whether the first CAI course was an improvement at the microframe level

and for determining which CAI concept areas were most in need of revision,

This iterative measurement approach is predicated on the assumption that

error rates will be a function of both the type of presentation mode

(textbooks, films, programmed instruction, homework problem sets), and the

nature of the concepts, especially in a hierarchically organized cou'rse,

Table 1 presents the outcome for the first revision of the physics

materials. The far right column of the table shows the downward perform-

ance trend for students taking the course in a conventional lecture

demonstration. For revision, the CAI curriculum developers separated out

types of questions associated with different presentation modes, namely,

textbooks, films, and conceptual exercises. As can be seen in Table: 1,

performance on the textbook materials was relatively consistent and

undoubtedly a direct function of immediate memory effects typically found

8
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TABLE 1

Mean Correct Proportions on First Responses

to DIfieent Lesson Material Categories

by Physics Topics for First Revision

Concepts Textbook Films
Conceptual

Exercises Baseline*

Scientific Measure .698 ,611 586 .591
Optics and Light .133 .675 n673 .578
Force and Energy 706 .547 n666 .483
Electricty, -703 .476 653 .391
Modern Physics .703 .486 0695 .412

*Data collected on prior student groups,

in assessing textbook comprehension, On the other hand, it is interest-

ing to note the much wider fluctuation in microframe performance for the

film presentations, As to the CA1 conceptual exercises, computer-

assisted insuctlon fed to superior criterion-level performance indicat-

ing that the goad of improved mastery of the more difficult conceptual

area such as found in electricity and modern physics was achieved. From

a methodological viewpoint, by summing croframe performance statistics

over concepts, a better insight into relative CAI performance and the

priorities, fo.:r. revision was gained. This then led to a primary focus on

improving the questions associated with the later physics film sections

in the course and a secondary focus on providing more CAI conceptual

exercises. The iterative revision process resulted in a final course

performance of CA1 students that was approximately 15% superior on the

final exam in comparison with the conventional course students.
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An additional measurement revision strategy involves frequent

pre- and posttest assessment on clusters of behavioral objectives (Lipe,

1970). Typically, after analyzing difference scores for learning games,

Investigators rank them in order to identify the behavioral objectives

of the course most in need of revision. The rationale for this ranking

procedure is that the curriculum developer needs to be parsimonious in

his effort and should focus on those behavioral objectives most critically

in need of further development. Thus, a rank ordering of pre-posttest

difference scorc,s gives an index of the microframes most in need of

revision.

LatencleE:, Latencies on learning and testing materials have been

utilized wlthin measurement strategies for CAI. Latencies on study frames

(frames presenting the basic conceptual materials) appear to provide the

best index of those concepts found most difficult for the students. For a

junior high school science course run under CAI (Brown, Conlon, Dasenbrock,

Kellogg, Teates, & Redfield, 1970), a substantial inverse relationship

appeared between study time and performance on criterion tests. That is,

the negative correlation was of the magnitude r = -,82. Partialing out

the effect of differential lengths of passages still leaves a relatively

high correlation, r = -,62, From a revision point of view, these latency

values provided the basis upon which the basic presentation material was

revised within this individualized CAI course. The approach was further

substantiated by the finding of a moderate relatioip, r = .46, between

reading comprehension and terminal course performance for the students in

this junior high science CAI course. Thus, the capability for collecting

10
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latencies on CAI presentation frames permits development of a performance

index about relative reading or comprehension difficulty which can be

combined with the item performance statistics for developing a more

refined revision strategy.

Confidence ratings. A recent study concerning a science learning

game (Harvey, 1970) indicated that subjective confidence ratings on micro-

frame science concepts yield results parallel to the terminal exam per-

formance, that is, the students' ratings of their confidence in handling

questions for specific science concepts were remarkable predictors of

their terminal performance. In addition, pre- and posttreatment comparison

of the confidence rating on concepts yielded significant positive gains

similar to final test performance .Thr the individualized approach which in

turn was superior to the conventional lecture discussion condition, Thus,

confidence ratings are one more index which can be employed within micro-

frame measurement procedures.

Redundancy identification. An additional microframe technique

suggested by Holland (1965) for programmed instruction is that of blocking

out materials to identify inefficient redundancies. Random procedures are

used to block out sentences with a programmed frame. Similar to the cloze

techniques, this procedure produces an index of the impact of specific

instructional presentations.

As an equivalent technique, CAI investigators (Brown, Hansen,

Thomas, & King, 1970) have composed equivalent materials with differential

redundancy levels. The study indicated that allowing students to self-

select among redundancy levels leads to effective performance outcomes.

11



That is, the better performing students consistently choose the more

concise presentation and the students with the hyhest error rates tend

to choose the most redundant materials. Though not a direct application

of the blockout techniques, this redundancy self-selection procedure

does provide performance indices by which to study presentation microframes

as opposed to test microframes. Unfortunately, very little empirical

work has been performed utilizing these redundancy techniques due to the

additional materials preparation requirement,

III. Conceptual Measurement Techniques

The term "conceptual segments" refers to the grouping of concepts

to form specified CAI learning sessions. For example, in the CAI physics

course, the concepts relating to light would be a CAI concept segment,

The basic measurement approach to these larger CAI units has been the

attempt to develop quantitative learning models. Extensive effort has

been given to developing finite state models and applying them to begin-

ning CAI mathematics problems (Suppes, Jerman, & Bryan, 1968) or sequencing

of vocabulary words in initial reading (Atkinson & Wilson, 1969). In

essence, the finite state models attempt to define a series of learned and

unlearned states and to specify the transition probabilities so as to

maintain a record of the current learning state of a student for a given

concept. Given the history status, the investigator can decide between

the need to continue presenting materials, or the need for review.

Unfortunately, the results of experimentation using this type of mathe-

matical model have been far from promising; alternative decision rules

appear to lead to inconsequential differences between CAI optimization

groups and nonoptimization groups.
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Linear regression models. An alternatve approach consists of

using a linear regression model to keep tack of the m'croframe indices

referred to above, an/ dynamically predict teiminaI performance levels.

The measurement techniques within this linear regression approach con-

sist of a two-phased empirical development, First, substantial numbers

of students are linearly directed through all the CAI material. As many

dependent measures as possible are assessed, and then are regressed against

terminal performance levels in order to establish relationships and

associated Beta weights. For the second phase, the 'inear regression model

is dynamically employed to predict or identify al failure cause, and

CAI remediation is then applied,

In recent experiment performed in the FSU CAI laboratory (Rivers,

1971), this methodology was employed.. Initially, 33 students were

linearly taken through a CAI program which used scientific concepts for

relating heart failure and EKG drawings, Next, the CAI course was

segmented into nine concept areas, and the dependent measures of probability

of correct response, mean latency on subcriterjon items, and trait and

state anxiety indices were regressed on terminal performance levels. For

each of the nine concepts, a linear regression equation was prepared by

which to predict an individual's performance on the terminal test. The

experiment was then repeated with four different groups, as follows: (a)

a regression optimization group which received remediation and additional

practice only if it was predicted that their performance was falling below

a preestablished criterion level of 80% on the terminal test; (b) a total

remediation control group, that is, a group that received all possible

remediation; (c) a student selection group that could self-select remediation

ld



9

if desired; and (d) a no-remediation control group Table 2 presents the

mean final examination performance for these fou.( groups. As can be

observed, the optimization group performed better than the other three

groups. Moreover, the outcomes were ordered out in a sensibly appro-

priate fashion; i.e,, the total remed7ation group performed better than

the student selection of review materals, or the no-remediation group.

TABLE 2

Mean Final Examination Outcomes for

the Optimization Experiment

Groups Mean Percentage Correct*

Regression Optimization Group 82 30 65%

Total Remediation Control 77,65 62%

Student Selection 65.45 52%

No Remediation Control 61.45 49%

*Out of 126

Experiments of this type indicate how measurement-based individualization

can be extended beyond the concepts of inchvidual learning rates or

remedial review conditional on embedded subcrterion tests. In essence,

what is gained through a dynmic or continuously updated history record

is a more substantial way of predicting performance and intervening with

appropriate CAI learning materials, It is worth noting that this

technique can be used within computer-managed instruction or programmed

14
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instruction if sufficient automation is applied at various test points via

dynamic procedures. These optimization models may hold promise for

integrating the performance indices associated with microframe measure-

ment techniques.

IV. Course Assessment

Effectiveness methodology typically compares a lecture demonstra-

tion course with some individualized CAI course approach. The most common

finding is that those students with lower entry performance levels typi-

cally improve significantly more than their counterparts under conventional

instruction. For example, Table 3, presenting results from the individual-

ized science learning game (Harvey, 1970)4 shows that the experimental and

conventional control groups, being split at the median, were equivalent

on the pretest science achievement measure, Not only did the most signifi-

cant improvement occur in the lower half of the experimental group, but

also this group was substantially superior on a concept specific criterion

test that reflected concepts embedded in the individualized materials,

As previously mentioned, the subjective confidence ratings improved

equivalently with the performance. In addition to this, a short attitude

scale indicated significantly positive shifts for the experimental group,

a common finding in individualized CAI instruction. Thus, most findings

(Majer, 1969; Hagerty, 1970; Lawler, 1971) tend to support the enhanced

final performance, positive attitudes, and higher subjective confidence

of individualized approaches to instruction.

As the majority of students come to achieve higher levels of

mastery via individualization, differential personality factors gain

15
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TABLE 3

Mean Outcomes for Experimental and Control

Groups for the Individualized

Science Learning Game

Experimental Conventional Lecture Group
Low Entry
Group

High Entry
Group

Low Entry
Group

High Entry
Group

General Science
Achievement

Pretest 38.94 52.94 39.06 53094

Posttest 56.72 59.44 41.78 5770

Criterion Science
Test

Pretest 25.50 28.22 23.72 29.17

Posttest 43.88 44.33 26.39 31.00

Science Concept
Confidence

Pretreatment 8.78 9.72 9.50 10.67

Posttreatment 11.28 13.28 10.39 11.44

Attitude

Pretreatment 231.28 281.61 264.28 256.48
Posttreatment 316.17 339.28 292.44 264.17

ascendancy in the instructional process. In the analysis of the CAI

physics course, the investigators found that CAI students with a

humanistic orientation, low orientation towards science and technology,

and high needs for affiliation and trust tended to gain the most from

the individualized CAI course (Majer, 1969). In comparison, a subgroup

16
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of students-In the conventional lecture session with a personality

pattern-just the reverse, i.e., theoretically oriented, high values for

science, and autonomous tendenceis, was the high performing group.

This type of personality investigation, while still in its beginning

states, has implications for appropriate selection and assignment pro-

cedures within individualized CAI treatments. The need is evident for

more research in the affective domain as individualization receives a

wider dissemination throughout all levels of education.

Simulation, Simulation techniques for total course assessment

can be established 10 relate course processes and outcomes. In a recent

simulation study, King (1970) created a model of an individualized teacher

training curriculum, and found that by using the variables of social

extroversion (which was negatively correlated (r - -.70) with learning

time) and cumulative grade point average (r = .36 with learning time),

the mean learning time could be reduced by 40% by selecting on these

cognitive and affective variables. The modeling of an individualized CAI

courseng simulation techniques indicated, in King's (1970) study,

that it was difficult to shift performance levels due to the high criterion

levels observed but that learning time could be manipulated via selection

procedures. This simulated finding is highly consistent with empirical

findings for individualized courses and illustrates how simulation can aid

in course revision and improved effectiveness,

Cost assessment. Individualized instruction systems, especially

those utilizing computers, have a higher cost per instructional hour.

17
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Savings in learning time and increases in performance levels are counter-

balanced by Increased fiscal costs. Utility theory can be employed to

related these above factors. Although this is an extremely detailed

methodology, the approach can be characterized briefly: one attempts to

calculate all potential losses by taking the probability of the risk

which is the difference between perfect performance and actual performance

and multiply this by the actual cost per instructional hour. These

calculations allow for combining outcome performance level with actual

instructional costs.

Most recent analyses of this type indicate that the loss coef-

ficients for individualized instruction tend to converge on the costs

for conventional courses due to labor factors, Moreover, computer-

managed instruction promises to offer an approach that is significantly

cheaper with excellent learng outcomes. For example, in a number of

courses running at the FSU -CAI Center using CMI (Hagerty, 1970; Lawler,

1971; Dick & Gallagher, 1971), the costs tend to be approximately 60

cents per hour. It should be noted that the computer contact time

represents approximately 12% of the course contact involvement. But

still, there is a great need for more effectiveness models for relating

the current and future outcomes of various individualized approaches so

that economical forecasts of their associated costs and outcome potential

can be made. Unfortunately, the development of these types of models

appears to be exceedingly complex and difficult.

V. Future

In considering future development of measurement techniques for

individualized instruction, a number of trends are foreseeable. First,

18
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there is a need for more extensive conventiona' evaluation, especially

dealing with the topics of review and retenf-lon. Moreove..r, it has been

recommended that additional incidental measures, beyond at of attitude

alone, be considered in evaluating an individualized course, Such

factors as attendance, commitment to the importance of the curriculum,

and career development are being recommended for consideration, Finally,

it is appropriate to recognize the need for models that relate the

learning process to personality processes (Leherissey, 1971), since

these affective variables become more important in criterion-oriented

instruction. Primarily, linear regression models will be employed to

perform these investigations, but it is hoped that the use of simulation

techniques will become more frequent, since they have a great potential

for increased sophistication, The benefit of simulation rests in the

identification of the potential application of individualizing procedures

such as appropriate selection and assignment of media treatment so as to

optimize the potentaa learning outcomes. Thus, researchers can anticipate

that simulation models will become increasingy prominent in attempting

to relate the specific empirical outcomes of a given individualized course

to its potential application in the broader context of a training system.
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